Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations

نویسندگان

  • Pei Yu
  • Maoan Han
چکیده

In this paper, we show that a Z2-equivariant 3rd-order Hamiltonian planar vector fields with 3rd-order symmetric perturbations can have at least 10 limit cycles. The method combines the general perturbation to the vector field and the perturbation to the Hamiltonian function. The Melnikov function is evaluated near the center of vector field, as well as near homoclinic and heteroclinic orbits. 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

Bifurcation of Limit Cycles in Cubic Integrable Z2-Equivariant Planar Vector Fields

In this paper, we study bifurcation of limit cycles in cubic planar integrable, non-Hamiltonian systems. The systems are assumed to be Z2-equivariant with two symmetric centers. Particular attention is given to bifurcation of limit cycles in the neighborhood of the two centers under cubic perturbations. Such integrable systems can be classified as 11 cases. It is shown that different cases have...

متن کامل

Twelve Limit Cycles in a Cubic Order Planar System with Z2-symmetry

In this paper, we report the existence of twelve small limit cycles in a planar system with 3rd-degree polynomial functions. The system has Z2symmetry, with a saddle point, or a node, or a focus point at the origin, and two focus points which are symmetric about the origin. It is shown that such a Z2-equivariant vector field can have twelve small limit cycles. Fourteen or sixteen small limit cy...

متن کامل

An Improved Lower Bound on the Number of Limit Cycles Bifurcating from a quintic Hamiltonian Planar Vector Field under quintic Perturbation

The limit cycle bifurcations of a Z2 equivariant quintic planar Hamiltonian vector field under Z2 equivariant quintic perturbation is studied. We prove that the given system can have at least 27 limit cycles. This is an improved lower bound on the possible number of limit cycles that can bifurcate from a quintic planar Hamiltonian system under quintic perturbation.

متن کامل

An Improved Lower Bound on the Number of Limit Cycles Bifurcating from a Hamiltonian Planar Vector Field of Degree 7

The limit cycle bifurcations of a Z2 equivariant planar Hamiltonian vector field of degree 7 under Z2 equivariant degree 7 perturbation is studied. We prove that the given system can have at least 53 limit cycles. This is an improved lower bound for the weak formulation of Hilbert’s 16th problem for degree 7, i.e., on the possible number of limit cycles that can bifurcate from a degree 7 planar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012